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Fear	Generalization	in	PTSD

Fear	generalization	is	the	process	by	which	fear	of	a	threat	cue	
transfers	to	similar	but	safe	cues.	

Understanding	overgeneralization	and	its	and	neural	correlates	
will	help	to	inform	conceptualization	and	treatment	of	PTSD.

Overgeneralization	of	acquired	fear	is	a	core	feature	of	PTSD:	
intense	distress	or	arousal	to	cues	that	resemble	an	aspect	of	
the	traumatic	event.	(DSM-5)



Stimulus	Generalization	Paradigm

ACQUISITION

15	oCS-,	15	vCS-,	15	CS+
12	of	15	CS+

GENERALIZATION

20	of	each	stimulus	type
10	additional	CS+

Participants:
58	US	combat	veterans	

Ø 20	with	PTSD
Ø 19	with	subthreshold	PTSD	symptoms
Ø 19	trauma-exposed	controls	

(Kaczkurkin et	al.	2017,	Am	J	Psychiat)



Stimulus	Generalization:	Self-Report	Findings

(Kaczkurkin et	al.	2017,	Am	J	Psychiat)

sig.	different	from	vCS- after	Hochberg	adjustment,	p<.05



Stimulus	Generalization:	fMRI	Findings

(Kaczkurkin et	al.	2017,	Am	J	Psychiat)



The	Salience	Network

The	salience	network.	
(Balsters et	al.	2013,	Front	Hum	Neurosci)

(Kaczkurkin et	al.	2017,	Am	J	Psychiat)



The	Central	Executive	Network

The	central	executive	network.	
(Doll	et	al.	2015,	Front	Hum	Neurosci)

(Kaczkurkin et	al.	2017,	Am	J	Psychiat)



(Kaczkurkin et	al.	2017,	Am	J	Psychiat)

The	default	mode	network.		
(Graner et	al.	2013,	Front	Neurol )

The	Default	Mode	Network



Study
Positive	gradients Negative	gradients

AI dmPFCa Caud Thal dlPFCb IPLc vmPFCd VPc HPC
Dunsmoor	et	al.,	2011 X X X
Greenberg	et	al.,	2013a X X X X X
Greenberg	et	al.,	2013b X X X X X
Kaczkurkin	et	al.,	2017 X X X X X X X X X
Lange	et	al.,	2017 X X X X X X X X
Lissek	et	al.,	2014 X X X X X X X
Onat &	Büchel,	(2015) X X X X

Network Salience	
Salience	

(subcortical)	
Central	
Executive

Default	mode

admPFC includes	Brodmann areas	(BA)	6	and	8	and	dorsal	ACC;	bBA 9	and	10;	cBA 40;	dBA 11

Neural	Substrates	of	Generalization



PTSD	Pathology	and	the	Triple-Network	Model

(Akiki et	al.	2017,	Curr Psychiatry	Rep)



The	Present	Study



Hypotheses

For	those	with	PTSD,	salience	and central	executive	networks	
will	form	less-steep	upward-sloping	gradients	of	
generalization.

For	those	with	PTSD,	default	mode	network will	form	less-
steep	downward-sloping	gradients	of	generalization.

For	those	with	PTSD,	SN	will	be	more	strongly	connected	
with	CEN	and	more	weakly	connected	with	DMN	during	
generalization.



Stimulus	Generalization	Paradigm

ACQUISITION

15	oCS-,	15	vCS-,	15	CS+
12	of	15	CS+

GENERALIZATION

20	of	each	stimulus	type
10	additional	CS+

Participants:
58	US	combat	veterans	

Ø 20	with	PTSD
Ø 19	with	subthreshold	PTSD	symptoms
Ø 19	trauma-exposed	controls	



Representing	Brain	Networks

Intrinsic	connectivity	networks	(ICN’s) reflect	patterns	of	
synchronized	fluctuations	in	neural	activity,	and	
characterize	the	brain’s	inherent	functional	organization.	
(Abram	et	al	2015,	Laird	et	al.	2010)

Resting-state	ICN’s	show	high	correspondence	across	
diagnostic	groups	and	brain	states	(Griffanti et	al.	2016,	Mennes
et	al.	2010,	Smith	et	al.	2009)

We	used	ICN’s	derived	from	a	large	(n=218)	resting-state
sample.



Back-Projection vs. Dual Regression

Two simulated data sets, based on a set of 10 uncorrelated spatial maps and 
orthogonal (i.e. uncorrelated) time courses embedded in Gaussian random noise: 

- group A: The three signals of interest (above) are amongst the 5 strongest signals.

- group B: Signals ‘F’ & ‘S’ remain unaltered, all other signals (including ‘L’) increase 
in strength by a factor of 2. As a consequence, signal ‘S’ no longer is amongst the 5 
strongest components, whereas signals ‘F’ and ‘L’ remain within this set. 

Data sets A and B are analysed using group-ICA as in [4] and concat-ICA with dual 
regression, reducing data into a 5-dimensional subspace. In both cases, the multi-
subject ICA maps identify all 3 signals of interest. Following back-projection as in [4] 
and dual regression as described here we can illustrate the difference in terms of:

➀ Sensitivity to the initial PCA-based dimensionally reduction: 
Signals ‘F’ and ‘S’ are both contained at equal strength in both data sets. 
Nevertheless, because ‘S’ is not represented in the initial reduced space of B, the 
back-projected signal ‘S’ differs between data sets A and B (i.e. detection of a 
significant difference for signal ‘S’; false-positive detection). 

By comparison, maps after dual regression are identical, i.e. correctly reflect that 
signals ‘F’ and ‘S’ are the same between data sets A and B (true negative detection)

➁ Sensitivity to global amplitude differences: 
Signal ‘L’ is twice as strong in data set B compared to data set A. 
Back-projected spatial maps for ‘L’ are identical (i.e. no detection of a significant 
difference between data sets A and B; false negative detection). 
By comparison, the dual regression results (with time series normalisation) reflect 
differences in the global amplitude between the data sets (true positive detection).

Dual Regression in context

The dual regression approach addresses a set of issues associated with alternative 
approaches for group resting-FMRI analysis:

- In contrast to a seed-voxel or seed-region based analysis approach the method 
described here does not rely on a single seed location but integrates the temporal 
information in the FMRI data across multiple distributed networks identified in the 
initial group ICA. The component maps of the initial ICA decomposition effectively 
define regions or networks of interest which are demonstrably relevant at the group 
level for the particular population (note, though, that instead of deriving the overall 
networks from the population under observation it is also possible to use pre-
defined networks such as those described in [1], see #246 M-PM). 
Furthermore, this approach uses multiple linear regression instead of single 
regression and therefore can estimate significant differences in the presence of 
other structured effects in the data which otherwise might negatively impact on 
such comparisons. Due to the multiple linear regression framework it can also more 
directly address questions about the dynamic interaction between networks (see 
#78 F-PM, #186 F-PM, #246 M-PM) 

- With respect to the alternative group-ICA methodology [4] the approach presented 
here estimates spatial and temporal dynamics at the subject level based on 
regression against the original data rather than estimating subject-specific maps by 
means of 'back-projection'. In the back-projection approach the estimated spatial 
maps necessarily lie within the space defined by (the pseudoinverse of) the initial 
subject-specific major Eigenspaces (PCA). As such, the final between-subject 
comparison (e.g. inference on the between-group difference) becomes dependent 
on the initial subject-specific reduction stages. While this is computationally 
efficient, the final statistical comparison on the back-projected maps can lead to 
significantly inaccuracies (both in terms of false-positive and false-negative 
detections). This is of particular importance as the effect differences can be small 
relative to the overall effect sizes. 

Group comparison of resting-state FMRI data using 
multi-subject ICA and dual regression
Christian F. Beckmann1,2, Clare E. Mackay2, Nicola Filippini2 and Stephen M. Smith2 

1Division of Neuroscience and Mental Health, Hammersmith campus, Faculty of Medicine, Imperial 
College London, UK

2FMRIB Centre, Department of Clinical Neurology, University of Oxford, UK

Introduction

Studies of resting FMRI data increasingly concern estimation at the group level, i.e. 
of differences in functional connectivity patterns between different subject groups 
and/or between data obtained under different conditions such as under 
pharmacological interventions. Seed-voxel/region-based regression approaches (e.g. 
[5]) and Independent Component Analysis (ICA) based techniques (e.g. [1,2]) have 
been used extensively in order to identify such patterns of functional connectivity 
under rest. While these approaches have proven useful in characterising these 
resting fluctuations at the individual subject level, extensions to group-level 
comparisons deserve continued investigation. In this work we discuss an analysis 
approach which combines multi-subject ICA with a dual regression approach in order 
to estimate such differences in functional connectivity in a principled way.

REFERENCES
[1] Beckmann, CF et al.(2005), 'Investigations into resting-state connectivity using independent component analysis', Philosophical 
Transactions of the Royal Society, 360(1457):1001-1013.
[2] Beckmann, CF et al. (2005), 'Tensorial extensions of independent component analysis for multisubject FMRI analysis', 
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23(S1):208-219.
[4] Calhoun, VD et al. (2001), 'A Method for Making Group Inferences from Functional MRI Data Using Independent Component 
Analysis', Human Brain Mapping, 14:140-151.
[5] Biswal, B et al. (1995), 'Functional Connectivity in the Motor Cortex of Resting Human Brain Using Echo-Planar MRI', MRM, 
34,:537-541.
[6] Filippini, N. et al. (2009), “Distinct patterns of brain activity in young carriers of the APOE-ε4 allele”, PNAS, 106:7209-7214

Conclusion

We have described a principled analysis approach which permits the identification 
of between-subject differences in resting functional connectivity based on between-
subject similarities using a dual regression approach within the framework of multi-
subject-ICA analysis. All the analysis steps can be carried out using tools from the 
FMRIB Software Library (FSL [3], http://www.fmrib.ox.ac.uk/fsl)

Method

Initial FMRI data pre-processing involves correction for head motion, spatial and 
temporal filtering (and potentially time-series normalization to unit variance) as well 
as co-registration of data to a common atlas space. The between-subject (group 
analysis) of the resting data then proceeds in three stages:

➀ concat-ICA: When analysing multiple subjects (or sessions) one can either form a  
3D Space*Time*Subjects data tensor and use tensor-ICA [2], or concatenate all 
datasets temporally to form a 2D Space*ConcatenatedTime data matrix, and use 
concat-ICA (as in [1]). Concat-ICA is particularly useful when the effects of interest 
are not  expected to have similar timecourses in all subjects' datasets - for example 
when looking for resting-state networks (RSNs). Multiple FMRI data sets are 
concatenated temporally and ICA is applied in order to identify large-scale patterns of 
functional connectivity in the population:
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➁ Dual Regression: This is used to 
identify, within each of the N individual 
subjects’ FMRI data, spatial maps and 
associated timecourses corresponding to 
the multi-subject ICA components. For 
each individual dataset separately:

(A) use the group-level spatial maps  as a 
set of spatial regressors in a GLM, to 
find temporal dynamics associated with 
each group-level map

➂ Inference: Finally, the different sets of spatial maps are collected across subjects 
into single 4D files (one per group-level ICA map) and analysed using non-
parametric methods, e.g. permutation testing. This results in spatial maps 
characterising the between-subject group-consistency and/or between-subject 
group-differences:

This results in pairs of estimates which form a dual space and jointly best 
approximate the original group ICA maps. 

(B) normalization of these timecourses to unit variance (optional, depending on 
what question the experimenter wants to ask later)

(C) use these timecourses as a set of temporal regressors in a GLM, to find subject-
specific maps (still associated with the group-level spatial maps:

The example above illustrates this approach in a population of 36 healthy subjects  
(18 APOE-ε4 carriers and 18 matched controls, see [6] and #181 SU-AM for details). 
The initial group-ICA (➀) identified multiple resting-state networks at the group level. 
By means of dual regression (➁), corresponding subject-specific maps are being 
estimated which, when compared between groups using non-parametric permutation 
testing (➂), reveal significantly increased hippocampal involvement in the ‘default 
mode network’ in ε4-carriers relative to non-carriers.

p<0.05 
FDR corrected

p<0.001 
uncorrected

back-projected ‘S’ from A back-projected ‘S’ from B Difference map

dual regression result for  ‘L’ from B Difference mapdual regression result for  ‘L’ from A

(adapted	from	Beckmann	et	al.	2009,	Neuroimage)

PREPROCESSING
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Selecting	ICN’s	of	Interest

Contain	brain	areas	
instantiating	group	

differences	in	
generalization

Display	
significant	
main	effect	
of	stimulus

Display	
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Results
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Tracking	Perceived	Risk

Risk	rating	gradient	steepness

P-DMNIns-SN Bil-CEN

Risk	rating	gradient	steepness Risk	rating	gradient	steepness

r	=	.289* r	=	.271* r	=	-.282*

*p <	.05



CAPS	Total CAPS	Total CAPS	Total

Ins-SN R-CEN
Bil-CEN

Tracking	Symptom	Severity

r	=	-.350** r	=	-.377** r	=	-.322*

*p <	.05
**	p	<	.01



SN-CEN	Connectivity

Ins-SN Bil-CEN

CAPS

r=.516,	
p <.001

F= 4.209,
p=.045

Hyperarousal

Intrusions



SN-CEN	Connectivity

Ins-SN R-CEN

r=.229,	
p=.084

CAPS

F=5.618,
p=.021

Hyperarousal

Intrusions



Return	to	the	Triple-Network	Theory

Codes	for	
overgeneralization	
of	perceived	risk

(adapted	from	Akiki et	al.	2017,	Curr Psychiatry	Rep)

Hyperconnectivity
during	generalization Shows	

overgeneralization	
of	threat	response

Codes	for	
overgeneralization	
of	perceived	risk

Codes	for	
overgeneralization	
of	perceived	risk

Shows	
overgeneralization	
of	threat	response
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