

Salience, Default Mode and Central Executive Network Activity during Fear Generalization in PTSD

Hannah Berg Anxiety and Depression Association of America 38th Annual Conference April 6th, 2018

Fear Generalization in PTSD

Fear generalization is the process by which fear of a threat cue transfers to similar but safe cues.

Overgeneralization of acquired fear is a core feature of PTSD: intense distress or arousal to cues that resemble an aspect of the traumatic event. (DSM-5)

Understanding overgeneralization and its and neural correlates will help to inform conceptualization and treatment of PTSD.

Stimulus Generalization Paradigm

> 19 trauma-exposed controls

Stimulus Generalization: Self-Report Findings

sig. different from vCS- after Hochberg adjustment, p<.05</p>

(Kaczkurkin et al. 2017, Am J Psychiat)

Stimulus Generalization: fMRI Findings

FIGURE 2. Group Differences in Positive Neural Gradients of Generalization in a Study of Neural Substrates of Overgeneralized Conditioned Fear^a

FIGURE 3. Group Differences in Negative Neural Gradients of Generalization in a Study of Neural Substrates of Overgeneralized Conditioned Fear^a

(Kaczkurkin et al. 2017, Am J Psychiat)

The Salience Network

(Kaczkurkin et al. 2017, Am J Psychiat)

The Central Executive Network

(Kaczkurkin et al. 2017, Am J Psychiat)

The central executive network. (Doll et al. 2015, *Front Hum Neurosci*)

The Default Mode Network

(Kaczkurkin et al. 2017, Am J Psychiat)

(Graner et al. 2013, Front Neurol)

Neural Substrates of Generalization

Study	Positive gradients						Negative gradients		
	AI	dmPFC ^a	Caud	Thal	dIPFC ^b	IPL ^c	vmPFC ^d	VPc	HPC
Dunsmoor et al., 2011	Х		Х	Х					
Greenberg et al., 2013a	Х	Х	Х				Х	Х	
Greenberg et al., 2013b	Х	Х	Х				Х	Х	
Kaczkurkin et al., 2017	Х	Х	Х	Х	X	Х	Х	Х	Х
Lange et al., 2017	Х	Х		Х	X	Х	Х	Х	Х
Lissek et al., 2014	Х	Х			X	Х	Х	Х	Х
Onat & Büchel, (2015)	Х						Х	Х	Х
Network	Salience		Salience (subcortical)		Central Executive		Default mode		

^admPFC includes Brodmann areas (BA) 6 and 8 and dorsal ACC; ^bBA 9 and 10; ^cBA 40; ^dBA 11

PTSD Pathology and the Triple-Network Model

(dissociation)

Fear generalization

(avoidance)

(Akiki et al. 2017, *Curr Psychiatry Rep*)

The Present Study

Hypotheses

For those with PTSD, salience and central executive networks will form less-steep upward-sloping gradients of generalization.

For those with PTSD, default mode network will form lesssteep downward-sloping gradients of generalization.

For those with PTSD, SN will be more strongly connected with CEN and more weakly connected with DMN during generalization.

Stimulus Generalization Paradigm

Representing Brain Networks

Intrinsic connectivity networks (ICN's) reflect patterns of synchronized fluctuations in neural activity, and characterize the brain's inherent functional organization. (Abram et al 2015, Laird et al. 2010)

Resting-state ICN's show high correspondence across diagnostic groups and brain states (Griffanti et al. 2016, Mennes et al. 2010, Smith et al. 2009)

We used ICN's derived from a large (n=218) resting-state sample.

Task-Related Activation of ICN's

PREPROCESSING

OBSERVED ACTIVITY OF COMPONENTS

TASK-RELATEDNESS OF COMPONENTS

(adapted from Beckmann et al. 2009, Neuroimage)

Standardized betas

Selecting ICN's of Interest

Contain brain areas instantiating group differences in generalization Display significant main effect of stimulus Display gradient upon visual inspection

ICN of Interest

Results

The Salience Network

- significant stim x group quadratic trend
- * significant stim x group linear trend

The Salience Network

* significant stim x group linear trend

The Central Executive Network

* significant stim x group quadratic trend

The Default Mode Network

Tracking Perceived Risk

CS+

oCS

Tracking Symptom Severity

SN-CEN Connectivity

SN-CEN Connectivity

Return to the Triple-Network Theory

(adapted from Akiki et al. 2017, *Curr Psychiatry Rep*)

References

- Abram, S. V., Wisner, K. M., Grazioplene, R. G., Krueger, R. F., MacDonald, A. W., & DeYoung, C. G. (2015). Functional coherence of insula networks is associated with externalizing behavior. *Journal of Abnormal Psychology*, *124*(4), 1079–1091. https://doi.org/10.1037/abn0000078
- Akiki, T. J., Averill, C. L., & Abdallah, C. G. (2017). A Network-Based Neurobiological Model of PTSD: Evidence From Structural and Functional Neuroimaging Studies. *Current Psychiatry Reports*, 19(11), 81. https://doi.org/10.1007/s11920-017-0840-4
- American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Retrieved from http://dsm.psychiatryonline.org/book.aspx?bookid=556
- Beckmann, C. F., Mackay, C. E., Filippini, N., & Smith, S. M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. *Neuroimage*, 47(Suppl 1), S148.
- Dunsmoor, J. E., Prince, S. E., Murty, V. P., Kragel, P. A., & LaBar, K. S. (2011). Neurobehavioral mechanisms of human fear generalization. *NeuroImage*, 55(4), 1878–1888. https://doi.org/10.1016/j.neuroimage.2011.01.041
- Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G., & Mujica-Parodi, L. R. (2013a). Neural reactivity tracks fear generalization gradients. *Biological Psychology*, 92(1), 2–8. https://doi.org/10.1016/j.biopsycho.2011.12.007
- Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G., & Mujica-Parodi, L. R. (2013b). Ventromedial Prefrontal Cortex Reactivity Is Altered in Generalized Anxiety Disorder During Fear Generalization. *Depression and Anxiety*, *30*(3), 242–250. https://doi.org/10.1002/da.22016
- Griffanti, L., Rolinski, M., Szewczyk-Krolikowski, K., Menke, R. A., Filippini, N., Zamboni, G., ... Mackay, C. E. (2016). Challenges in the reproducibility of clinical studies with resting state fMRI: An example in early Parkinson's disease. *NeuroImage*, *124*, 704–713. https://doi.org/10.1016/j.neuroimage.2015.09.021
- Kaczkurkin, A. N., Burton, P. C., Chazin, S. M., Manbeck, A. B., Espensen-Sturges, T., Cooper, S. E., ... Lissek, S. (2017). Neural Substrates of Overgeneralized Conditioned Fear in PTSD. American Journal of Psychiatry, 174(2), 125–134. https://doi.org/10.1176/appi.ajp.2016.15121549
- Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., ... Fox, P. T. (2011). Behavioral Interpretations of Intrinsic Connectivity Networks. *Journal of Cognitive Neuroscience*, 23(12), 4022–4037. https://doi.org/10.1162/jocn_a_00077
- Lange, I., Goossens, L., Michielse, S., Bakker, J., Lissek, S., Papalini, S., ... Schruers, K. (2017). Behavioral pattern separation and its link to the neural mechanisms of fear generalization. *Social Cognitive and Affective Neuroscience*, *12*(11), 1720–1729. https://doi.org/10.1093/scan/nsx104
- Lissek, S., Bradford, D. E., Alvarez, R. P., Burton, P., Espensen-Sturges, T., Reynolds, R. C., & Grillon, C. (2014). Neural substrates of classically conditioned fear-generalization in humans: a parametric fMRI study. *Social Cognitive and Affective Neuroscience*, *9*(8), 1134–1142. https://doi.org/10.1093/scan/nst096
- Mennes, M., Kelly, C., Zuo, X.-N., Di Martino, A., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2010). Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity. *NeuroImage*, *50*(4), 1690–1701. https://doi.org/10.1016/j.neuroimage.2010.01.002
- Onat, S., & Büchel, C. (2015). The neuronal basis of fear generalization in humans. Nature Neuroscience, 18(12), 1811–1818. https://doi.org/10.1038/nn.4166
- Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., ... Beckmann, C. F. (2009). Correspondence of the brain's functional architecture during activation and rest. *Proceedings of the National Academy of Sciences of the United States of America*, *106*(31), 13040–13045. https://doi.org/10.1073/pnas.0905267106

Acknowledgements

Cherry Ma Sam Abram Amanda Rueter Phil Burton Toni Kaczkurkin Angus MacDonald **Colin DeYoung** Shmuel Lissek

National Institutes of Health

NIH K99/R00 GRANT #5R00MH080130-04

